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Glassy behavior of the site frustrated percolation model
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The dynamical properties of the site frustrated percolation model are investigated and compared with those
of glass-forming liquids. When the density of the particles on the lattice becomes high enough, the dynamics
of the model becomes very slow, due to geometrical constraints, and rearrangement on large scales is needed
to allow relaxation. The autocorrelation functions, the specific volume for different cooling rates, and the
mean-square displacement are evaluated and are found to exhibit glassy bé&aw68-651X%97)10803-0

PACS numbes): 05.50+q, 61.20.Ja, 64.70.Pf, 64.60.Ak

. INTRODUCTION of bonds has a weightv(C) = e##*"CgN©) if the configu-
ration of bondsC does not contain a frustrated loop; other-

Frustration plays a central role in many complex systemswise W(C) =0.

such as spin glassg§] and glass-forming liquidg2]. In spin For general values ofj the model has been called
glasses frustration arises because ferromagnetic and antifeérg-bond frustrated percolation[6] and the partition func-
romagnetic interactions are distributed in such a way that théon (2) can be obtained from a Hamiltonian model in which,
spins cannot simultaneously satisfy all interactions. In glassbesides the Ising spins interacting in a spin-glass way, there
forming liquids frustration arises when local arrangements otire Potts spins in each site, interacting ferromagnetically,
molecules kinetically prevent all the molecules from reach-with multiplicity s=q/2 [7].
ing ordered close-packed configurations. The model exhibits two critical points for each value of
In this paper we study a lattice-gas model that containg): one at higher temperaturg,(q), corresponding to the
frustration as an essential ingredient. This model is the sitpercolation transition, in the same universality class as the
version of the bond frustrated percolation model, which wagerromagnetic Potts model with multiplicity=q/2, and one
defined in the context of the generalization of the Fortuin-at lower temperatur@sg(q), in the same universality class
Kasteleyn[3] Coniglio-Klein [4] cluster formulation to the as the Ising spin-glass transition. This has been verified by
spin-glass mod€]5]. renormalization methods®] and numerically{9].

More precisely, consider the Ising spin-glass Hamiltonian |t has also been showi7,8] that forq+ 2 the percolation
transition corresponds to a singularity in the partition func-
tion and thus corresponds to a real thermodynamic transition.

H= —JZ €SS, (1)  Each critical point is characterized by a diverging length,
(i) associated with the quantiti¢g,6]

wheree;; are quenched random interactions that assume the pij= p§+ Pij 3
values=*1 with equal probability. By introducing bond vari-

ables between each nearest-neighbor pair of spins, it is pognd

sible to show that the spin-glass partition function can be .

expressed as a sum over bond configurations on the lattice 9ij = Pij — Pij - 4

5
(5] Here pﬁ (pij) is the probability that(i) sitesi andj are

connected by at least one path of bonds &@ndthe phase
Zzz * gBun(C)gN(C), ) 7;; defined as the product over all the sig#y, along the
C path connecting andj is +1 (—1) [10].

The length £, associated with the pair connectedness
where q=2 is the multiplicity of the spins, Bu= function p;; diverges at the percolation critical point, while
In(e*—1), andn(C) andN(C) are, respectively, the num- the lengthé associated witlgizj diverges afl ¢(q) (the over-
ber of bonds and the number of clusters in the bond configubar represents the average over all possible interaction con-
ration C. The asterisk in Eq2) means that the sum extends figurations{e;;}). Forq=2 the quantityg;; in Eq. (4) coin-
over all the bond configurations that do not contain a “frus-cides with the spin-spin pair-correlation function.
trated loop.” This is defined as a closed path of bonds that However, we can give a geometrical interpretation of the
contains an odd number of antiferromagnetic interactions. Iisecond lengthé. The second transition, like the quantum
this formalism the spin-glass problem is mapped onto a parpercolation transitiof11], occurs at a bond density higher
ticular bond percolation problem, where each configuratiorthan the usual percolation transition, due to the interference
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of paths with different phases. At high density the number of
allowed configurations is extremely reduced and most of the
configurations connecting a given pair of siieandj will

have a common path. We call this path a “quasifrozen”
path, since in a dynamical sequence of configurations explor-
ing the allowed phase space, this path will be present most of
the time. In conclusion, the major contributiondq is due

to those configurations in whichandj are connected by
quasifrozen bondg5,12,13 and|gij| roughly coincides with

the probability thai andj belong to the same quasifrozen
cluster, and the length associated witrgizj roughly repre-
sents the linear dimension of these clusters.d=ed Eq.(2)
reduces to the bond frustrated percolation model, in which
bonds are randomly distributed on the lattice, with the only
constraint that configurations of bonds that contains at least
one frustrated loop are not allowgii4].

Thus the model incorporates in the simplest way the con-
cepts of geometrical frustration and could be applied to those
systems, such as glass-forming liquids, where geometrical
frustration due to packing problems plays a central role. We
note that in this model the disorder is quenched, while in
glass-forming liquids this is not the case. However, at low
temperature or high density the relaxation times are so large
that the disorder may be considered frozen in.

To better describe the particle nature of glassy systems,
we have introduced in this paper the site version of the frus-
trated percolation model, in which sites can be full or empty.
Full sites can be seen as “particles” and empty sites as va-
cancies. We leave unchanged the underlying structure of the
interactions and the constraint that no frustrated loop can be
fully occupied. We consider in this paper only the 1 case.

In Sec. Il we introduce the model and in Sec. Il we
describe two types of Monte Carlo dynamitisermalization
and diffusion dynamigsused to simulate the model. We ¢ . . - X
study the static properties of the system in Sec. IV. In par_Ioops (permltte(_j and (b) site configuration that contains a frus-
ticular, we verify that the percolation transition is in the :sametrate‘j loop(forbidden).
universality class as the=1/2 ferromagnetic Potts model. 8un(C)
The cooling rate dependence of the specific volume is con- W(C)=e 1™, ®)
sidered in Sec. V, while in Sec. VI we analyze the diffusion
dynamics of the model, evaluating the mean-square displac
ment of the particles and the diffusion coefficient. Finally, in >
Sec. VII we evaluate the autocorrelation functions of densit)/g_
fluctuations, in both thermalization and diffusion dynamics,

)

(b)

FIG. 1. (a) Site configuration that does not contain frustrated

vheren(C) is the number of particles in the configuration
, m is the chemical potential of the particles, and
1/kgT. The partition function of the model is given by

which show a behavior typical of glass-forming liquids. In Z= *ehun(C) (6)
the Appendix we describe in more detail the Monte Carlo c
procedure.

where the sum excludes forbidden configurations.

Note that there is only one independent paramg@er
which can vary from—« to co. Frustration prevents the sys-
tem from reaching a maximum densip=1 for Bu—

In the site frustrated percolatig8FP model particles are when Bu varies from—o« to «, the densityp=(n) varies
introduced on the vertices of a regular lattice. We assign térom 0 t0 ppx<1.
each edge of the lattice an interactiefj=+1, positive or The SFP model is expected to have two critical points, in
negative according to a random quenched distribution. Likeinalogy to the bond cag&-9]. Fixing the value ofu to a
in spin glasses a frustrated loop is a closed path of edges thaositive value and varying the temperature from high to low
contains an odd number of negative interactions. A particlealues, there is a first critical point at a temperatiiig
configuration is forbidden only if it contains a fully occupied corresponding to the percolation transition, and one at lower
frustrated lood 15] (see Fig. 1 Thus we assign zero weight temperatureTgg, corresponding to a spin-glass transition.
to all configurations of particles that contain at least one fullyThe percolation transition is expected to be in the same uni-
occupied frustrated loop and to all other configurations aversality class as the ferromagnete=1/2 ferromagnetic
weight Potts model, while in two dimensionBgg is expected to

Il. THE SITE FRUSTRATED PERCOLATION MODEL
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occur atT=0. At low temperature the model is expected to
have the characteristic features of a spin-glass system, such
as a rough free-energy landscape, very long relaxation times
due to the high-free-energy barriers, and many ground states
atT=0.

Ill. MONTE CARLO DYNAMICS

We have realized two types of Monte Carlo dynamics to
simulate the SFP model. The first, which we call “thermal-
ization dynamics,” proceeds through the following stefps.
Pick up a site at randonii) If the site is filled by a particle,
destroy that particle with probabilit?_ or leave the site
filled with probability (1—-P_). (iii) If the site is empty,
leave it empty if a new particle placed in that site would
close a frustrated loop; otherwise, if the particle would not
close a frustrated loop, create a new patrticle in that site with
probability P, or leave the site empty with probability
(1—P,). Looking at the partition functioii6), it is easy to X107
verify that the following probabilities of creating or destroy-

h | PR I
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ing a particle satisfy the principle of detailed balance: & 2571
3 [

P_=1, P,.=ef* for Bu<0, (7a £S , [

~ B

| I

P.=e A* P,=1 for Bu>0. (7b) = i

15 -

This dynamics is clearly ergodic because we can go from a
permitted configuratiom to a permitted configuratioms,

first destroying the particles belongingAcand then creating 1 L
those belonging td.

The difficult step here is to verify that a new particle does
not close a frustrated loop since this involves a nonlocal 0.5
check. The procedure is described in the Appendix.

The second type of Monte Carlo dynamics, which we call - L
“diffusion dynamics,” starts from a site configuration with O =i 23707 246 8 70 12 i4
some densityp of particles, obtained by thermalization dy- (b) Ll/V(gu — (Bu)p)
namics, and proceeds by letting the particles diffuse conserv-
N9 thelr.nu.mber' At each step a site is chosen at random, i FIG. 2. (a) Finite-size scaling of the probability that a spanning
the site is ﬂ"ed’ we make_ an attempt to move the par_tlde to(:Iuster exists andb) finite-size scaling of the mean cluster size.

a nearest-neighbaiNN) site. The move is accepted if the

probed site is empty and no frustrated loop is closed. whereng is the number of clusters having sigen the sys-
tem.
IV. PERCOLATION TRANSITION Using the histogram methdd6], we evaluated the values
AND EQUILIBRIUM DENSITY of these three quantities for an entire interval of the param-

] ] ] ) eter Bu. Shown in Fig. 2 is the finite-size scaling Bf, and
In this section we analyze the percolation properties of the)s y, from which it is possible to extract the values of the

model. The analysis of the data confirms that the percolatiogyitica| temperature, and of the critical exponemtsnd y
transition, for the site frustrated percolation problem, is infq7

the same universality class as the ferromagretid/2 Potts The data are perfectly compatible with the values
model, as was formerly verified for the bond problg®h »~1=0.56 andy=3.27 of thes=1/2 Potts modef18]. The
We have used the histogram method for analyzing datgyitical (percolation value for Bu is found to be
[16]. For various lattice sizes, we simulated the system usingﬂﬂ)p: 1.2, which corresponds to a densty=0.6, which
thermalization dynamics for ten temperatures around the peig ithin the error, not different from the percolation density
colation point. For each temperature we reached equilibriund¢ iha standard random site percolatiop=0.593[19].
by taking 1¢ steps and then evaluated the histograms of the We evaluated the equilibrium density of the SFP, varying
following quantities, taking 10 steps: density of particles the parameteBu from Bu=—15 to Bu=15, with a rate
p, probability of existence of a spanning clustr, and 3y 1075 siep~?. The result is shown in Fig. 3. For compari-
mean cluster sizg. The mean cluster size is defined as  gon we plot also the equilibrium density of the unfrustrated
model, which is given by=1/(1+e ##). This curve fits
X=£2 s2n, (8) quite well the low-density part, since for low density the
N effect of frustration is negligible. The high-density part in-
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FIG. 3. Equilibrium density of the SFP as a function 8

(circles, together with the fit functior(lower curve. The upper
curve is the density of the unfrustrated model.

stead is better fitted by the function

Pmax

P= Tyea b ©

wherep .= 0.788,a=0.323, andb=0.719. Note from Fig.
3 that the crossover occurs at a value@y, close to the
percolation threshold.

V. COOLING RATE DEPENDENCE OF THE DENSITY

The effect of frustration prevents the system freasily

reaching the equilibrium density, especially at very high val-

ues of the paramete®u, that is, forBu— . Fixing u to a

positive value and cooling the temperature from high to low

values with a finite cooling rate, there is a temperafigeat

which the system goes out of equilibrium. Lowering the tem-

1.5

1.45
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1. 1 | Il
125, 01 "0z 03 04 05

kpT/p

FIG. 4. Temperature dependence of the specific volgimein
the SFP model (3232 square lattice for various cooling rates.
From upper curves to lower one&gT/u=10"2, 103, 1074,
1075, 10°%, and 107 step L.

we expect that the effect of frustration on the diffusion is
very weak because of abundance of holes and particles dif-
fuse freely on the lattice.

We have evaluated the mean-square displace(8D)
(Ar(t)?) as a function of time, as shown in Fig. 5. Each
curve is obtained averaging over all the particles and over a
time interval of 5000 steps. As expected for low density, the
curves show a linear behavior, which corresponds to normal
diffusion. For high densities, the MSD reaches a plateau and
then becomes again linearly dependent on time. This behav-
ior is typical of glass-forming liquids and is also observed in
molecular-dynamics simulatiofi21,22. The crossover from
the normal behavior to the anomalous diffusion in our model
again occurs at a density value close to percolation.

We have extrapolated the diffusion coefficient values

perature further, the density remains constant to the value

corresponding to the temperaturg .

—
—

Figure 4 shows the temperature dependence of the density =+
for various cooling rates. Temperature goes from ‘%
kgT/u=0.5 to kgT/x=0 and cooling rates range from 4
kgT/u=10"2to 10’ step L. One step is one update per
site. 10

This behavior is experimentally observed in supercooled
glass-forming liquids, at the calorimetric glass transition
temperatureTg, when structural relaxation times become 1
greater than the experimental observation tif23. As in
glass-forming liquids, in the model we observe that the faster
the cooling rate, the greater the glass transition temperature 10
and the specific volume.

102

VI. DIFFUSION DYNAMICS 10 — U B

We then studied the diffusion dynamigsonserved num- t
ber of particleg of the system. The diffusion process is se- F|G. 5. Mean-square displacemefiir?(t)) as a function of
verely hindered by kinetic constraints at high density andimet, in the SFP model on a square lattice witk 32, for densi-
particles can diffuse through the system only by a large-scalges (from upper curves to lower oneg=0.452, 0.586, 0.730,
cooperative rearrangement of many particles. At low density.756, 0.766, 0.777, 0.784, and 0.785.
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with p.=0.7874 andy=1.5. R 2es °
Note thatp. is equal within the errors tp,,.y, the density 0%e°
corresponding to the ground state, as extracted from the fit ¢ o 2% eesece
(9). Thus the dynamic singularity coincides in this model . E:..: .
with the spin-glass transition, which in two dimensions oc- {b) e

curs atT=0. If we setp.=pmax, USINg EQ.(9) we obtain
from Eq. (10

e & o0
o000 [ ]
®

[T IK 1]

1 Y
1re a bBm

D~|1- ~e bYB) (11

which shows that the diffusion coefficient goes to zero with

an Arrhenius law fofT—0.

The picture that emerges from the model is that particles 4 .
are trapped most of the time in cages formed by their NN and ® H
can diffuse only into localized pockets. Only after a very sse ) H :
long interval of time do they have the opportunity of escap- ® oe0s . : *2e°s’
ing from the cage, falling in a “next-neighbor” cage. This 08900803 32.2%° Sea 3 30 2800 2000
process forms a kind of random walk, reflected in the long- b H Ceos sess” o0 3%230 o3
time linear dependence of the MSD functions. 0 ess C0s8e083°%8 o° Sesestii Sles

This picture is enforced by direct observation of the par- (c) | & 0000000 ¢ oo @ ¢ ¢ 09 e

ticles moving on the lattice. We have taken “snapshots” of

the system at particular times, for diffusion dynamics at two g, 7. path of tagged particles at density 0.783 after 2000
high values of the density. Some particles leave tracks on thgeps(a), after 4000 stepéh), and atp=0.785 after 2000 steps).
lattice, so we can analyze also the path they have takemots are particles that have moved at least one time in the time
Shown in Fig. 7 is the snapshot @t 0.783 after 2000 steps indicated(nonfrozen domains the filled circles represent particles
[Fig. 7(a)], after 4000 stepfFig. 7(b)] and atp=0.785 after  that have never moved in the time indicat@dzen domainsThe
2000 stepgFig. 7(c)]. frozen domains ir(c) are still frozen after X 10° steps.

We mark with dots the particles that moved at least one
time (nonfrozen domainsduring the time of the simulation; idlike zones(frozen clusters Frozen clusters are eroded as
the filled circles represents frozen domains. Clusters of frothe time of the simulation gets longer, while liquidlike zones
zen particles prevent other particles from moving freely. Wegrow.
note that frozen particles are clustered and we can distin- At the very high density, frozen particles remain blocked
guish liquidlike zonegholes and mobile particlg$rom sol-  for extremely long times. The frozen cluster in Figc)?
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FIG. 8. Relaxation functionk(t) of the site density as a func- ¢
tion of timet, for the thermalization dynamics, on ar= 36 square
lattice, for temperatures betweaf“=1 and e®*=1000, corre- FIG. 9. Relaxation functionk,(t) of the density fluctuations as
sponding to equilibrium densityfrom lower to higher relaxation @ function of timet, for the diffusion dynamics, for densities
times: p=0.450, 0.639, 0.715, 0.782, and 0.784. p=0.452, 0.639, 0.777, and 0.784, on lar 36 square lattice and
ky=, k,=0.

comesponding to densityy=0.785, Is still frozen after andr , is the position of therth particle in units of the lattice

2X10° steps, which corresponds to the maximum time We.onstant. The wave vector can take the valkes(2/

have observed. We have checked that the large frozen clustﬁn wheren has integer components, and n, ranging
! y

does not percolate in either direction, even if the density Ok, o to L/2. The autocorrelation functions corresponding
the frozen particles is much greater than the percolation deng n.=L/2 andn,=0 are reported in Fig. 9.

sity of the random site percolation. We expect that the frozen  Figyre 10 shows the self-part of the relaxation function in
particles in fact percolate 8t=0 (p=pmay since the linear the diffusion dynamics, defined as
dimension of the frozen cluster should correspond roughly to

the correlation length associated wigh [Eq. (4)], which for ES(t) = }< 2 eik-<ra<t>ra(0>>>
d=2 is expected to diverge di;z=0, as explained in the k n\< '
Introduction.

(15

where n is the number of particles. At low temperatures,

VII. RELAXATION FUNCTIONS below the percolation threshold, we observe the onset of

An important property that characterizes glassy behavior 1

is the form of the relaxation function®3-25. We have =
evaluated the relaxation functions of the system, in the ther-‘ﬂf
malization and in the diffusion dynamics. For each tempera- 08
ture, we reach the equilibrium and then evaluate the relax- |
ation functions averaging on a time interval of3xa10° I
steps. 06

Figure 8 shows the density-density autocorrelation func- I
tion in the thermalization dynamics, defined as

(3p(1) 5p(0))
(6p°)
where 8p(t) = p(t) —(p). For diffusion dynamics, we have

studied the autocorrelation function of the density fluctua- I
tions 0

(3pe()9p_i(0) 13 i

(6pidp-1) "

F()= 12

02 -

Fr(t)=

where FIG. 10. Self-part-i(t) of relaxation functions of the density

fluctuations as a function of time, for the diffusion dynamics, for
pk(t)=2 gk Ta(t) (14) densities(from lower to higher relaxatiop tim¢_3)=0.452, 0.639,
@ 0.757, and 0.783 on dn=36 square lattice, with, =, k,=0.
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nonexponential decay. This is usually the sign of nonstochasyeneric and may be applied to other systems, where geo-
tic cooperative relaxation in the system. We emphasize thametrical frustration plays an essential role. In fact, recently
for our model, the percolation transition corresponds to a reahe model has been successfully applied also to granular ma-
thermodynamic transition and therefore it is possible to exterials[30].

pect, below this point, a change in the dynamical properties
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short-time relaxation, corresponding to relaxation inside non- APPENDIX

frozen domains surrounded by a frozen cage, and a long-time A¢ mentioned in Sec. Ill, we describe here the procedure

regime (« relaxation, corresponding to structural rearrange- 1, check whether or not a new particle, added to the system
ment and final decay to equilibrium. in a given configuration, closes a frustrated loop.

Every NN particle(occupied sitg of the empty site that
has been probed to be filled, belongs tgnat necessarily
distinch cluster of connected sites. If two particles that are

We have studied a frustrated lattice-gas model that habIN to the empty site belong to the same connected cluster,
been called site frustrated percolation since percolation play#en a new particle filling that site closes a loop. More pre-
an important role. This model, despite its simplicity, shows &acisely, if z, is the number of particle NN’s to the empty site
complex dynamical behavior. Disorder and frustration are itand z; is the number ofistinct clusters to which they be-
basic ingredients. The constraint of frustration prevents théong, then the total number of new loops closed by the new
system from easily reaching a high density and inhibits theparticle isA=z,—z..
motion of particles at a high density. The algorithm proceeds as follows. We count the number

We observed that the dependence of the volume as a funey of particles that are NN to the empty site that we want to
tion of the temperature varies strongly with the cooling rate fill and mark each of them as the root of a distinct cluster, so
qualitatively in the same way as observed in real glassat the beginning.=z, and\=0; we grow every cluster in
forming liquids. The motion of particles in diffusion dynam- parallel, adding to it in a recursive way its still not visited
ics is severely hindered by the frustration constraint and thé&IN particles and marking them as belonging to that cluster;
relaxation process can take place only through large-scaliéno particle NN to a cluster is found, that cluster is marked
rearrangement. The cooperative nature of the motion is reas “burnt” and is not considered anymore; if two clusters
flected in the behavior of the mean-square displacement armbllide, we say we have found a loop, the two clusters merge
in the relaxation functions of the system. The plateaus obto form a single cluster) is increased by one angl is
served in the self-part of relaxation functiof®g. 10 and in  decreased by one. Every new visited site is marked in two
the mean-square displaceméhtg. 5 are intrinsically con- ways: with the label of the cluster to which it belongs and
nected and are characteristic of the glassy nature of the dwvith the “parity,” which is the number of antiferromagnetic
namical properties of the model. In all these phenomena thimteractions proceeded through starting from the initial
crossover from a normal behavior to an anomalous behavia@mpty site. We stop the iteration when one of the following

VIIl. CONCLUSION

occurs close to or at the percolation threshold. circumstances happens: two clusters collide and the parities
Since SFP seems to describe well the glass transition in
glass-forming liquids, the model suggests that the presence 10°

of a percolation-type transition may be a general feature be- E
low which frustration effects start to be manifested. This N
transition may be responsible for various precursor phenom-
ena[13], such as the onset of stretched exponentials, the
breakdown of the Stokes-Einstein relation, and the presence

of spatial heterogeneity.

The presence of a percolation transition well above the
glass transition has recently been discovered by Tomida and
Egami[28] in a molecular-dynamic simulation of monatomic
liquids. It is also interesting to note that Kivelsehal.[29]
showed that the viscosity of 15 glass-forming liquids could
be collapsed on one single curve, by assuming only one char-
acteristic temperature well above the glass transition. Finally,
the ideal glass transition temperature, characterized by the

divergence of the inverse of the diffusion coefficient, nu- -15 =10 -5 0 5 10 15
merically seems consistent with the divergence of the static Bu
length ¢ associated withy;; [Eq. (4)]. FIG. 11. CPU times needed to make a single-site update as a

Although we have discussed the site frustrated percolatiofunction of Bu, for lattice sizes(from lower to upper curvés
model in the context of glassy systems, the model is rathelt =24, 32, 40, 48, 56, and 64.
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do not corresponéhat is, one is odd and the other is exen in this case are very ramified. In Fig. 11 the CPU time
in this case we have found a frustrated loop; the number ofieeded to do a single-site update is shown for a square bidi-
burnt clusters equalg.— 1 (only one cluster is nonburntin mensional system and for various lattice dimensions. The
this case no other loop can be found. When the density aofmaximum time is reached near the percolation transition and
particles is low, this algorithm is very fast since the clustersscales as

are very small and are burnt within few iterations. On the

other hand, when the density is high, the maximum number e NO-40£005 (A1)

of independent loop is found quickly as well. The algorithm max '

can become slow when the density of particles is intermedi-

ate, notably near the percolation transition, because clustevghereN=L2 is the total number of sites.
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