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Glassy behavior of the site frustrated percolation model
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The dynamical properties of the site frustrated percolation model are investigated and compared with those
of glass-forming liquids. When the density of the particles on the lattice becomes high enough, the dynamics
of the model becomes very slow, due to geometrical constraints, and rearrangement on large scales is needed
to allow relaxation. The autocorrelation functions, the specific volume for different cooling rates, and the
mean-square displacement are evaluated and are found to exhibit glassy behavior.@S1063-651X~97!10803-0#

PACS number~s!: 05.50.1q, 61.20.Ja, 64.70.Pf, 64.60.Ak
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I. INTRODUCTION

Frustration plays a central role in many complex syste
such as spin glasses@1# and glass-forming liquids@2#. In spin
glasses frustration arises because ferromagnetic and an
romagnetic interactions are distributed in such a way that
spins cannot simultaneously satisfy all interactions. In gla
forming liquids frustration arises when local arrangements
molecules kinetically prevent all the molecules from rea
ing ordered close-packed configurations.

In this paper we study a lattice-gas model that conta
frustration as an essential ingredient. This model is the
version of the bond frustrated percolation model, which w
defined in the context of the generalization of the Fortu
Kasteleyn@3# Coniglio-Klein @4# cluster formulation to the
spin-glass model@5#.

More precisely, consider the Ising spin-glass Hamilton

H52J(̂
i j &

e i j SiSj , ~1!

wheree i j are quenched random interactions that assume
values61 with equal probability. By introducing bond var
ables between each nearest-neighbor pair of spins, it is
sible to show that the spin-glass partition function can
expressed as a sum over bond configurations on the la
@5#

Z5(
C

* ebmn~C!qN~C!, ~2!

where q52 is the multiplicity of the spins,bm5
ln(eqbJ21), andn(C) andN(C) are, respectively, the num
ber of bonds and the number of clusters in the bond confi
rationC. The asterisk in Eq.~2! means that the sum extend
over all the bond configurations that do not contain a ‘‘fru
trated loop.’’ This is defined as a closed path of bonds t
contains an odd number of antiferromagnetic interactions
this formalism the spin-glass problem is mapped onto a p
ticular bond percolation problem, where each configurat
551063-651X/97/55~5!/4943~8!/$10.00
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of bonds has a weightW(C)5ebmn(C)qN(C) if the configu-
ration of bondsC does not contain a frustrated loop; othe
wiseW(C)50.

For general values ofq the model has been calle
‘‘ q-bond frustrated percolation’’@6# and the partition func-
tion ~2! can be obtained from a Hamiltonian model in whic
besides the Ising spins interacting in a spin-glass way, th
are Potts spins in each site, interacting ferromagnetica
with multiplicity s5q/2 @7#.

The model exhibits two critical points for each value
q: one at higher temperatureTp(q), corresponding to the
percolation transition, in the same universality class as
ferromagnetic Potts model with multiplicitys5q/2, and one
at lower temperatureTSG(q), in the same universality clas
as the Ising spin-glass transition. This has been verified
renormalization methods@8# and numerically@9#.

It has also been shown@7,8# that forqÞ2 the percolation
transition corresponds to a singularity in the partition fun
tion and thus corresponds to a real thermodynamic transit
Each critical point is characterized by a diverging leng
associated with the quantities@7,6#

pi j5pi j
11pi j

2 ~3!

and

gi j5pi j
12pi j

2 . ~4!

Here pi j
1 (pi j

2) is the probability that~i! sites i and j are
connected by at least one path of bonds and~ii ! the phase
h i j defined as the product over all the signsemn along the
path connectingi and j is 11 (21) @10#.

The length jp associated with the pair connectedne
function pi j diverges at the percolation critical point, whil
the lengthj associated withgi j

2 diverges atTSG(q) ~the over-
bar represents the average over all possible interaction
figurations$e i j %). For q52 the quantitygi j in Eq. ~4! coin-
cides with the spin-spin pair-correlation function.

However, we can give a geometrical interpretation of t
second lengthj. The second transition, like the quantu
percolation transition@11#, occurs at a bond density highe
than the usual percolation transition, due to the interfere
4943 © 1997 The American Physical Society
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4944 55SCARPETTA, de CANDIA, AND CONIGLIO
of paths with different phases. At high density the number
allowed configurations is extremely reduced and most of
configurations connecting a given pair of sitesi and j will
have a common path. We call this path a ‘‘quasifroze
path, since in a dynamical sequence of configurations exp
ing the allowed phase space, this path will be present mo
the time. In conclusion, the major contribution togi j is due
to those configurations in whichi and j are connected by
quasifrozen bonds@6,12,13# andugi j u roughly coincides with
the probability thati and j belong to the same quasifroze
cluster, and the lengthj associated withgi j

2 roughly repre-
sents the linear dimension of these clusters. Forq51 Eq.~2!
reduces to the bond frustrated percolation model, in wh
bonds are randomly distributed on the lattice, with the o
constraint that configurations of bonds that contains at le
one frustrated loop are not allowed@14#.

Thus the model incorporates in the simplest way the c
cepts of geometrical frustration and could be applied to th
systems, such as glass-forming liquids, where geomet
frustration due to packing problems plays a central role.
note that in this model the disorder is quenched, while
glass-forming liquids this is not the case. However, at l
temperature or high density the relaxation times are so la
that the disorder may be considered frozen in.

To better describe the particle nature of glassy syste
we have introduced in this paper the site version of the fr
trated percolation model, in which sites can be full or emp
Full sites can be seen as ‘‘particles’’ and empty sites as
cancies. We leave unchanged the underlying structure o
interactions and the constraint that no frustrated loop can
fully occupied. We consider in this paper only theq51 case.

In Sec. II we introduce the model and in Sec. III w
describe two types of Monte Carlo dynamics~thermalization
and diffusion dynamics! used to simulate the model. W
study the static properties of the system in Sec. IV. In p
ticular, we verify that the percolation transition is in the sam
universality class as thes51/2 ferromagnetic Potts mode
The cooling rate dependence of the specific volume is c
sidered in Sec. V, while in Sec. VI we analyze the diffusi
dynamics of the model, evaluating the mean-square displ
ment of the particles and the diffusion coefficient. Finally,
Sec. VII we evaluate the autocorrelation functions of dens
fluctuations, in both thermalization and diffusion dynami
which show a behavior typical of glass-forming liquids.
the Appendix we describe in more detail the Monte Ca
procedure.

II. THE SITE FRUSTRATED PERCOLATION MODEL

In the site frustrated percolation~SFP! model particles are
introduced on the vertices of a regular lattice. We assign
each edge of the lattice an interactione i j561, positive or
negative according to a random quenched distribution. L
in spin glasses a frustrated loop is a closed path of edges
contains an odd number of negative interactions. A part
configuration is forbidden only if it contains a fully occupie
frustrated loop@15# ~see Fig. 1!. Thus we assign zero weigh
to all configurations of particles that contain at least one fu
occupied frustrated loop and to all other configurations
weight
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W~C!5ebmn~C!, ~5!

wheren(C) is the number of particles in the configuratio
C, m is the chemical potential of the particles, an
b51/kBT. The partition function of the model is given by

Z5(
C

* ebmn~C!, ~6!

where the sum excludes forbidden configurations.
Note that there is only one independent parameterbm,

which can vary from2` to `. Frustration prevents the sys
tem from reaching a maximum densityr51 for bm→`:
whenbm varies from2` to `, the densityr5^n& varies
from 0 to rmax,1.

The SFP model is expected to have two critical points
analogy to the bond case@7–9#. Fixing the value ofm to a
positive value and varying the temperature from high to l
values, there is a first critical point at a temperatureTp ,
corresponding to the percolation transition, and one at lo
temperatureTSG, corresponding to a spin-glass transitio
The percolation transition is expected to be in the same
versality class as the ferromagnetics51/2 ferromagnetic
Potts model, while in two dimensionsTSG is expected to

FIG. 1. ~a! Site configuration that does not contain frustrat
loops ~permitted! and ~b! site configuration that contains a frus
trated loop~forbidden!.
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55 4945GLASSY BEHAVIOR OF THE SITE FRUSTRATED . . .
occur atT50. At low temperature the model is expected
have the characteristic features of a spin-glass system,
as a rough free-energy landscape, very long relaxation ti
due to the high-free-energy barriers, and many ground st
at T50.

III. MONTE CARLO DYNAMICS

We have realized two types of Monte Carlo dynamics
simulate the SFP model. The first, which we call ‘‘therm
ization dynamics,’’ proceeds through the following steps.~i!
Pick up a site at random.~ii ! If the site is filled by a particle,
destroy that particle with probabilityP2 or leave the site
filled with probability (12P2). ~iii ! If the site is empty,
leave it empty if a new particle placed in that site wou
close a frustrated loop; otherwise, if the particle would n
close a frustrated loop, create a new particle in that site w
probability P1 or leave the site empty with probabilit
(12P1). Looking at the partition function~6!, it is easy to
verify that the following probabilities of creating or destro
ing a particle satisfy the principle of detailed balance:

P251, P15ebm for bm,0, ~7a!

P25e2bm, P151 for bm.0. ~7b!

This dynamics is clearly ergodic because we can go fro
permitted configurationA to a permitted configurationB,
first destroying the particles belonging toA and then creating
those belonging toB.

The difficult step here is to verify that a new particle do
not close a frustrated loop since this involves a nonlo
check. The procedure is described in the Appendix.

The second type of Monte Carlo dynamics, which we c
‘‘diffusion dynamics,’’ starts from a site configuration wit
some densityr of particles, obtained by thermalization dy
namics, and proceeds by letting the particles diffuse cons
ing their number. At each step a site is chosen at random
the site is filled, we make an attempt to move the particle
a nearest-neighbor~NN! site. The move is accepted if th
probed site is empty and no frustrated loop is closed.

IV. PERCOLATION TRANSITION
AND EQUILIBRIUM DENSITY

In this section we analyze the percolation properties of
model. The analysis of the data confirms that the percola
transition, for the site frustrated percolation problem, is
the same universality class as the ferromagnetics51/2 Potts
model, as was formerly verified for the bond problem@9#.

We have used the histogram method for analyzing d
@16#. For various lattice sizes, we simulated the system us
thermalization dynamics for ten temperatures around the
colation point. For each temperature we reached equilibr
by taking 104 steps and then evaluated the histograms of
following quantities, taking 105 steps: density of particle
r, probability of existence of a spanning clusterP` , and
mean cluster sizex. The mean cluster size is defined as

x5
1

N(
s
s2ns , ~8!
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wherens is the number of clusters having sizes in the sys-
tem.

Using the histogram method@16#, we evaluated the value
of these three quantities for an entire interval of the para
eterbm. Shown in Fig. 2 is the finite-size scaling ofP` and
of x, from which it is possible to extract the values of th
critical temperature, and of the critical exponentsn and g
@17#.

The data are perfectly compatible with the valu
n2150.56 andg53.27 of thes51/2 Potts model@18#. The
critical ~percolation! value for bm is found to be
(bm)p51.2, which corresponds to a densityrp.0.6, which
is, within the error, not different from the percolation dens
of the standard random site percolationrp50.593@19#.

We evaluated the equilibrium density of the SFP, varyi
the parameterbm from bm5215 to bm515, with a rate
331025 step21. The result is shown in Fig. 3. For compar
son we plot also the equilibrium density of the unfrustrat
model, which is given byr51/(11e2bm). This curve fits
quite well the low-density part, since for low density th
effect of frustration is negligible. The high-density part i

FIG. 2. ~a! Finite-size scaling of the probability that a spannin
cluster exists and~b! finite-size scaling of the mean cluster size.
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4946 55SCARPETTA, de CANDIA, AND CONIGLIO
stead is better fitted by the function

r5
rmax

11e2a2b~bm! , ~9!

wherermax50.788,a50.323, andb50.719. Note from Fig.
3 that the crossover occurs at a value ofbm, close to the
percolation threshold.

V. COOLING RATE DEPENDENCE OF THE DENSITY

The effect of frustration prevents the system fromeasily
reaching the equilibrium density, especially at very high v
ues of the parameterbm, that is, forbm→`. Fixing m to a
positive value and cooling the temperature from high to l
values with a finite cooling rate, there is a temperatureTG at
which the system goes out of equilibrium. Lowering the te
perature further, the density remains constant to the va
corresponding to the temperatureTG .

Figure 4 shows the temperature dependence of the de
for various cooling rates. Temperature goes fro
kBT/m50.5 to kBT/m50 and cooling rates range from
kBṪ/m51022 to 1027 step21. One step is one update pe
site.

This behavior is experimentally observed in supercoo
glass-forming liquids, at the calorimetric glass transiti
temperatureTG , when structural relaxation times becom
greater than the experimental observation times@20#. As in
glass-forming liquids, in the model we observe that the fas
the cooling rate, the greater the glass transition tempera
and the specific volume.

VI. DIFFUSION DYNAMICS

We then studied the diffusion dynamics~conserved num-
ber of particles! of the system. The diffusion process is s
verely hindered by kinetic constraints at high density a
particles can diffuse through the system only by a large-s
cooperative rearrangement of many particles. At low den

FIG. 3. Equilibrium density of the SFP as a function ofbm
~circles!, together with the fit function~lower curve!. The upper
curve is the density of the unfrustrated model.
-

-
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we expect that the effect of frustration on the diffusion
very weak because of abundance of holes and particles
fuse freely on the lattice.

We have evaluated the mean-square displacement~MSD!
^Dr (t)2& as a function of timet, as shown in Fig. 5. Each
curve is obtained averaging over all the particles and ove
time interval of 5000 steps. As expected for low density,
curves show a linear behavior, which corresponds to nor
diffusion. For high densities, the MSD reaches a plateau
then becomes again linearly dependent on time. This beh
ior is typical of glass-forming liquids and is also observed
molecular-dynamics simulations@21,22#. The crossover from
the normal behavior to the anomalous diffusion in our mo
again occurs at a density value close to percolation.

We have extrapolated the diffusion coefficient valu

FIG. 5. Mean-square displacement^Dr 2(t)& as a function of
time t, in the SFP model on a square lattice withL532, for densi-
ties ~from upper curves to lower ones! r50.452, 0.586, 0.730,
0.756, 0.766, 0.777, 0.784, and 0.785.

FIG. 4. Temperature dependence of the specific volumer21 in
the SFP model (32332 square lattice!, for various cooling rates.

From upper curves to lower ones:kBṪ/m51022, 1023, 1024,
1025, 1026, and 1027 step21.
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55 4947GLASSY BEHAVIOR OF THE SITE FRUSTRATED . . .
D5^Dr (t)2&/t from the long-time regime, which are show
in Fig. 6. The extrapolated values are very well fitted by
power law as a function of density

D;~r2rc!
g, ~10!

with rc.0.7874 andg.1.5.
Note thatrc is equal within the errors tormax, the density

corresponding to the ground state, as extracted from th
~9!. Thus the dynamic singularity coincides in this mod
with the spin-glass transition, which in two dimensions o
curs atT50. If we setrc5rmax, using Eq.~9! we obtain
from Eq. ~10!

D;S 12
1

11e2a2b~bm!D g

;e2bg~bm!, ~11!

which shows that the diffusion coefficient goes to zero w
an Arrhenius law forT→0.

The picture that emerges from the model is that partic
are trapped most of the time in cages formed by their NN
can diffuse only into localized pockets. Only after a ve
long interval of time do they have the opportunity of esca
ing from the cage, falling in a ‘‘next-neighbor’’ cage. Th
process forms a kind of random walk, reflected in the lon
time linear dependence of the MSD functions.

This picture is enforced by direct observation of the p
ticles moving on the lattice. We have taken ‘‘snapshots’’
the system at particular times, for diffusion dynamics at t
high values of the density. Some particles leave tracks on
lattice, so we can analyze also the path they have ta
Shown in Fig. 7 is the snapshot atr50.783 after 2000 step
@Fig. 7~a!#, after 4000 steps@Fig. 7~b!# and atr50.785 after
2000 steps@Fig. 7~c!#.

We mark with dots the particles that moved at least o
time ~nonfrozen domains! during the time of the simulation
the filled circles represents frozen domains. Clusters of
zen particles prevent other particles from moving freely. W
note that frozen particles are clustered and we can dis
guish liquidlike zones~holes and mobile particles! from sol-

FIG. 6. Long-time diffusion coefficientsD as a function of den-
sity r. The fit function isD52.143ur20.7874u1.53.
fit
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idlike zones~frozen clusters!. Frozen clusters are eroded a
the time of the simulation gets longer, while liquidlike zon
grow.

At the very high density, frozen particles remain block
for extremely long times. The frozen cluster in Fig. 7~c!,

FIG. 7. Path of tagged particles at densityr50.783 after 2000
steps~a!, after 4000 steps~b!, and atr50.785 after 2000 steps~c!.
Dots are particles that have moved at least one time in the t
indicated~nonfrozen domains!; the filled circles represent particle
that have never moved in the time indicated~frozen domains! The
frozen domains in~c! are still frozen after 23105 steps.
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4948 55SCARPETTA, de CANDIA, AND CONIGLIO
corresponding to densityr50.785, is still frozen after
23105 steps, which corresponds to the maximum time
have observed. We have checked that the large frozen clu
does not percolate in either direction, even if the density
the frozen particles is much greater than the percolation d
sity of the random site percolation. We expect that the fro
particles in fact percolate atT50 (r5rmax) since the linear
dimension of the frozen cluster should correspond roughl
the correlation length associated withgi j @Eq. ~4!#, which for
d52 is expected to diverge atTSG50, as explained in the
Introduction.

VII. RELAXATION FUNCTIONS

An important property that characterizes glassy beha
is the form of the relaxation functions@23–25#. We have
evaluated the relaxation functions of the system, in the th
malization and in the diffusion dynamics. For each tempe
ture, we reach the equilibrium and then evaluate the re
ation functions averaging on a time interval of 1032106

steps.
Figure 8 shows the density-density autocorrelation fu

tion in the thermalization dynamics, defined as

F~ t !5
^dr~ t !dr~0!&

^dr2&
, ~12!

wheredr(t)5r(t)2^r&. For diffusion dynamics, we hav
studied the autocorrelation function of the density fluctu
tions

Fk~ t !5
^drk~ t !dr2k~0!&

^drkdr2k&
, ~13!

where

rk~ t !5(
a

eik•ra~ t ! ~14!

FIG. 8. Relaxation functionsF(t) of the site density as a func
tion of time t, for the thermalization dynamics, on anL536 square
lattice, for temperatures betweenebm51 and ebm51000, corre-
sponding to equilibrium density~from lower to higher relaxation
times!: r50.450, 0.639, 0.715, 0.782, and 0.784.
e
ter
f
n-
n

o

r

r-
-
x-

-

-

andra is the position of theath particle in units of the lattice
constant. The wave vector can take the valuesk5(2p/
L)n, where n has integer componentsnx and ny ranging
from 0 to L/2. The autocorrelation functions correspondi
to nx5L/2 andny50 are reported in Fig. 9.

Figure 10 shows the self-part of the relaxation function
the diffusion dynamics, defined as

Fk
s~ t !5

1

n K (
a

eik•~ra~ t !2ra~0!!L , ~15!

where n is the number of particles. At low temperature
below the percolation threshold, we observe the onse

FIG. 10. Self-partFk
s(t) of relaxation functions of the density

fluctuations as a function of time, for the diffusion dynamics, f
densities~from lower to higher relaxation times! r50.452, 0.639,
0.757, and 0.783 on anL536 square lattice, withkx5p, ky50.

FIG. 9. Relaxation functionsFk(t) of the density fluctuations as
a function of time t, for the diffusion dynamics, for densitie
r50.452, 0.639, 0.777, and 0.784, on anL536 square lattice and
kx5p, ky50.
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55 4949GLASSY BEHAVIOR OF THE SITE FRUSTRATED . . .
nonexponential decay. This is usually the sign of nonstoch
tic cooperative relaxation in the system. We emphasize t
for our model, the percolation transition corresponds to a
thermodynamic transition and therefore it is possible to
pect, below this point, a change in the dynamical proper
of the system.

Evident at very high density is the existence of differe
time regimes as predicted by themode-mode couplingtheory
@26, 27# of supercooled liquids and observed both in so
molecular-dynamic simulations and in some experimen
measurement@23# on glass-forming liquids. There is a firs
short-time relaxation, corresponding to relaxation inside n
frozen domains surrounded by a frozen cage, and a long-
regime (a relaxation!, corresponding to structural rearrang
ment and final decay to equilibrium.

VIII. CONCLUSION

We have studied a frustrated lattice-gas model that
been called site frustrated percolation since percolation p
an important role. This model, despite its simplicity, show
complex dynamical behavior. Disorder and frustration are
basic ingredients. The constraint of frustration prevents
system from easily reaching a high density and inhibits
motion of particles at a high density.

We observed that the dependence of the volume as a f
tion of the temperature varies strongly with the cooling ra
qualitatively in the same way as observed in real gla
forming liquids. The motion of particles in diffusion dynam
ics is severely hindered by the frustration constraint and
relaxation process can take place only through large-s
rearrangement. The cooperative nature of the motion is
flected in the behavior of the mean-square displacement
in the relaxation functions of the system. The plateaus
served in the self-part of relaxation functions~Fig. 10! and in
the mean-square displacement~Fig. 5! are intrinsically con-
nected and are characteristic of the glassy nature of the
namical properties of the model. In all these phenomena
crossover from a normal behavior to an anomalous beha
occurs close to or at the percolation threshold.

Since SFP seems to describe well the glass transitio
glass-forming liquids, the model suggests that the prese
of a percolation-type transition may be a general feature
low which frustration effects start to be manifested. Th
transition may be responsible for various precursor phen
ena @13#, such as the onset of stretched exponentials,
breakdown of the Stokes-Einstein relation, and the prese
of spatial heterogeneity.

The presence of a percolation transition well above
glass transition has recently been discovered by Tomida
Egami@28# in a molecular-dynamic simulation of monatom
liquids. It is also interesting to note that Kivelsonet al. @29#
showed that the viscosity of 15 glass-forming liquids cou
be collapsed on one single curve, by assuming only one c
acteristic temperature well above the glass transition. Fina
the ideal glass transition temperature, characterized by
divergence of the inverse of the diffusion coefficient, n
merically seems consistent with the divergence of the st
lengthj associated withgi j @Eq. ~4!#.

Although we have discussed the site frustrated percola
model in the context of glassy systems, the model is ra
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generic and may be applied to other systems, where g
metrical frustration plays an essential role. In fact, recen
the model has been successfully applied also to granular
terials @30#.
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APPENDIX

As mentioned in Sec. III, we describe here the proced
to check whether or not a new particle, added to the sys
in a given configuration, closes a frustrated loop.

Every NN particle~occupied site! of the empty site that
has been probed to be filled, belongs to a~not necessarily
distinct! cluster of connected sites. If two particles that a
NN to the empty site belong to the same connected clus
then a new particle filling that site closes a loop. More p
cisely, if zn is the number of particle NN’s to the empty si
and zc is the number ofdistinct clusters to which they be
long, then the total number of new loops closed by the n
particle isl5zn2zc .

The algorithm proceeds as follows. We count the num
zn of particles that are NN to the empty site that we want
fill and mark each of them as the root of a distinct cluster,
at the beginningzc5zn andl50; we grow every cluster in
parallel, adding to it in a recursive way its still not visite
NN particles and marking them as belonging to that clus
if no particle NN to a cluster is found, that cluster is mark
as ‘‘burnt’’ and is not considered anymore; if two cluste
collide, we say we have found a loop, the two clusters me
to form a single cluster,l is increased by one andzc is
decreased by one. Every new visited site is marked in
ways: with the label of the cluster to which it belongs a
with the ‘‘parity,’’ which is the number of antiferromagneti
interactions proceeded through starting from the init
empty site. We stop the iteration when one of the followi
circumstances happens: two clusters collide and the par

FIG. 11. CPU times needed to make a single-site update
function of bm, for lattice sizes~from lower to upper curves!
L524, 32, 40, 48, 56, and 64.
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do not correspond~that is, one is odd and the other is even!:
in this case we have found a frustrated loop; the numbe
burnt clusters equalszc21 ~only one cluster is nonburnt!: in
this case no other loop can be found. When the density
particles is low, this algorithm is very fast since the clust
are very small and are burnt within few iterations. On t
other hand, when the density is high, the maximum num
of independent loop is found quickly as well. The algorith
can become slow when the density of particles is interme
ate, notably near the percolation transition, because clus
nd

s.

o,

at
t
u-

sa
e
t

of

of
s

r

i-
rs

in this case are very ramified. In Fig. 11 the CPU tim
needed to do a single-site update is shown for a square
mensional system and for various lattice dimensions. T
maximum time is reached near the percolation transition
scales as

tmax}N
0.4060.05, ~A1!

whereN5L2 is the total number of sites.
d P.
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